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ABSTRACT 

Existence of a topological joining between two subshifts X and X I defines 

a relation between points of the two. Suppose z E X is generic for an 

invariant measure/J on X;  when is a related z ~ E X ~ also generic for some 

corresponding measure pl on Xt?  We prove this property holds in several 

situations for bounded-to-one joinings: when/J  a n d / j l  are the measures 

with maximal entropy on intrinsically ergodic X and X I, and also when p 

has a unique preimage on the joining, a property for which several sufficient 

conditions are given. In the lat ter  case it is also possible to prove tha t  the 

nearer a point is to genericity with respect to p, the nearer to genericity 

with respect to pl a related point is. 

Bounded-to-one joinings may be defined by nonambiguons ra- 

t ional transductions. This provides several applications, most  of them in 

Number Theory. It is proven tha t  transducers performing multiplication 

by integers have the suitable properties: this implies multiplication by a 
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rational preserves near normality; so does addition of a rational. An ap- 

plication to Markov measures, and sufficient conditions for a transducer to 

map normality to the  base p to normality to the base p l  p~ ~ p, are given. 

Introduction 

The purpose of this article is manifold. 

There is first an arithmetical motivation. It is well known that  when a normal 

number is multiplied or divided by an integer, the result is also normal [KN, 

R2]; the classical proof is based on Weyl's criterion. There operations are easily 

represented as actions of literal tranducers on an infinite sequence of digits; these 

transducers are deduced from the usual algorithm of multiplication in section 4 

below. G. Rauzy asked us the following question: when does the action of a 

literal transducer preserve normality of such a sequence, i.e. uniform asymptotic 

frequency for words with the same length? Of course, in the general case, this 

has no particular number-theoretic meaning, because the transducer does not 

perform any simple operation like multiplication by a rational. But this is no 

idle question. So many years after Champernowne's first example [C], there 

remains much to understand about equidistribution. 

We also asked ourselves another question: suppose the answer to Rauzy's 

question is yes; is the property stable for small perturbations of the uniform 

measure? Or else, assuming a sequence to be nearly normal (in the sense of (k, e)- 

normality), under what assumptions are its transduced images almost normal? A 

more striking, number-theoretical aspect of this question being: given a rational 

number r ¢ 0, is it true that the closer z is to normality, the closer rx will be? 

It is easy to give a precise meaning to these notions of closeness to normality, 

using the topology of weak convergence of measures. There are many instances in 

which, for practical reasons, one uses "random sequences" which are not strictly 

so in the sense of normality, but have a satisfying asymptotic frequency of words 

with length less than a certain bound. When such sequences are submitted to the 

action of a transducer, do they keep the same property, at least to some degree? 

Now, let us drop the 1-torus, the Lebesgue measure and transducers for a 

while. Rauzy's and all other questions we asked may be given a more general 

abstract phrasing, having some interest of its own for ergodicians. We first intro- 

duce a few definitions. A subshift Y (i.e. a closed shift-invariant subset of some 
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A z) is said to be a jo in ing  of X and X '  if X and X ~ are topological factors, 

or continuous, onto, shift-commuting images of Y; in this case a point x E X 

and a point x ~ E X ~ are said to be related if they have a common preimage in 

Y; the corresponding definition is valid for invariant measures. Two subshifts 

are said to be finitely equivalent if they have a bounded-to-one joining. Finite 

equivalence was introduced by Parry in [P3] in order to classify subshifts of fi- 

nite type according to their maximal entropy, but it is a natural idea and may 

serve many other purposes. Transducers with bounded-to-one input and output 

maps define a finite equivalence between their input and output systems; in the 

ease of a multiplication transducer, it is a nontrivial finite equivalence between 

two copies of the same full shift. The idea is to investigate topological features 

of the problems: replace the transducer by some finite equivalence between two 

subshifts X and X ~ (not necessarily full shifts): one may ask whether if a point is 

generic for some invariant measure/~ on X (not necessarily the one with maximal 

entropy, when unique), related points in X I are also generic for some correspond- 

ing measure/~; there is no general reason for ~ to be equal to/~t. This is the 

property we call genericity preservation. One may also ask about preservation of 

almost genericity. In fact, these are the questions we answer first, using mainly 

topological tools; solutions of the normality problems, as well as other results, 

are obtained as corollaries of the abstract statements. 

Section 2 contains ergodic results on genericity of points related to, or trans- 

duced images of, generic points. They are obtained with elementary techniques of 

the theory of invariant measures on compact metric spaces. Most of them might 

be stated within the larger framework of Topological Dynamics. Proposition 2.1 

states that when two subshifts X and X t have a joining Y, given an invariant 

measure/~ on X, a ~-generic point x E X, and an element x ~ of X ~, related to x 

through this joining, then the set of weak limits of Cesaro measures of x s (usually 

called "measures associated to x") is included in the set of invariant measures on 

X ~ related to/~. So, if we are able to prove there is only one invariant measure/~s 

on X ~ related to/~, an easy compactness argument shows that any x ~ related to a 

~-generic x is ~t-generic. There remains to find sufficient conditions for unique- 

ness of measure/~l. This is achieved for the measures with maximal entropy of 

two finitely equivalent intrinsically ergodic subshifts (Proposition 2.2), which are 

necessarily related to each other only. Applying this result to transducers, one 

obtains an answer to Rauzy's question, and more (Corollary 2.4). Another con- 
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dition, slightly more restrictive as far as joinings are concerned, but much less 

restrictive for measures, is the following: an ergodic measure p on X is said to 

have Property T if there exists an ergodic measure v on Y with image # such that 

# o ~o(E) > 0 implies v(E) > 0 for any measurable set E C Y. In Proposition 

2.7 this is shown to imply uniqueness of v, hence of #'. Synchronizing measures 

possess Property T (Proposition 2.8). 

Section 3 deals with preservation of almost genericity. In addition to the tools 

of the former section we use (k, e, p)-genericity, an obvious generalization of (k, e)- 

normality; (k, e)-normality was introduced by Besicovich [Bes] and further used 

in [CE, $1, $2, BerV]. There is a close connection between (k, e, p)-genericity 

and the metric of the set .A4(X) of measures on X, endowed with the topology 

of weak convergence (Lemma 3.1). A simple topological argument (Lemma 3.2) 

then allows to show (Proposition 3.3) that when p is an invariant measure on X 

having a unique lift v on Y, then given an integer k I and e I > 0, there exist k and 

such that if z is (k, e, p)-generic, then any transduced image of x is (k ~, et, p~)_ 

generic. In other terms, when an invariant measure Pl is close enough to #, any 

transduced image #~ of Pl is close to pl (Proposition 3.4). 

Most results in sections 2 and 3 might be stated in the more general framework 

of compact metric spaces endowed with a homeomorphism. 

Section 4 is devoted to applications. The first paragraph deals with the ques- 

tions at the root of this article: we prove that multiplication transducers satisfy 

all requirements for Propositions 2.2 and 3.4 to apply. Suitable properties are 

checked for input and output (i.e. for multiplication and division) for transducers 

corresponding to multiplication by integers: they are irreducible by Proposition 

4.1, and nonambiguous for input and output in the two elementary cases: when 

multiplier and base are relatively prime (Lemma 4.2), when the multiplier is a 

divisor of the base (Lemma 4.4). All these properties belong to the folk-lore of 

Automata Theory; they have been included in this paper for easier understand- 

ing by people not familiar with that field. Then we exploit these results in terms 

of normality: Proposition 4.6 states that given a rational r, the closer a number 

is to normality, the closer its product by r also is. 

We evoke addition of a rational, for which the methods of sections 2 and 3 

work perfectly well. 

Still in the same section, we ~ddress the question of preservation of genericity 

by transducers when the input measure p is Markov with topological support X; 
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then/~ possesses Property T and it is possible to give an explicit formula for the 

lift v. We also give and example of a non-synchronizing automaton for which 

some Markov measures have property T. 

Finally, Proposition 4.14 gives a condition for preservation of normality when 

the transducer is input-deterministic but not necessarily bounded-to-one for out- 

put, the input and output systems being two different full shifts; of course in this 

case "preservation of normality" only means the transducer maps normality in 

the first base p to normality in the second base q. This is possible only when q 

divides p (Proposition 4.15). To illustrate these properties, we describe a trans- 

ducer transforming the 4-shift into the 2-shift, and preserving normality in that 

s e n s e .  

There are two fields we did not investigate at all. The first is action of general 

(not literal) transducers on measures; in this case the difficulty arises from the fact 

that the transformations do not commute with the shift. When the transducer 

defines a coding, some results have been obtained in [BP] about correspondence of 

measures; in the setting of this article it is quite likely that Property T, as a suffi- 

cient condition for uniqueness of the lift, may produce significant results. Brogiio 

and Liardet [BrL] have also studied deterministic transducers which might be 

called "erasers": the output is either identical to input, or equal to the empty 

word; their aims do not coincide with ours, but there is some relationship: for 

instance, they obtain theorems on normality of subsequences closely connected 

with those in [K, KW], by different means. The same formalism is used in [Me] 

with a completely different purpose. 

The second domain is joinings not defined by transducers: this is a deliberate 

choice. It is quite sure there are nice cases to investigate in this direction. In 

[KW] interested readers can find an example of an extension of [0,1] z by an 

infinite automaton: though the extension space is not compact, some tools and 

the nature of the result: normality preservation, are the same as in the present 

article. But it is not a proper joining, since the second map does not commute 

with the shift. Their implicit tool is in fact a kind of infinite-state non-literal 

transducer. 

ACKNOWLEDGEMENT: We want to thank C. Frougny, G. Hansel, Y. Mathieu, 

C. Manduit, D. Perrin and especially G. Rauzy for various valuable contributions. 

The referee of Israel Journal of Mathematics quite wisely asked us to clarify the 
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1. D e f i n i t i o n s  

Let A be a finite set of symbols endowed with the discrete topology, A* be the 

set of all finite sequences on A; a l anguage  on A is any subset of A*. The set A z 

of all biinfmite sequences on A, endowed with the product topology, is a compact 

metric space; so is the set A N of infinite sequences. The shif t  ~ : A z --* A z (or 

A N -* A N) defined by ~((zn)n~z,N) = ((Z,+I)n~Z,N) is a homeomorphism of A z 

(a continuous transformation of AN). A subsh i f t  on A is any closed a-invariant 

subset of A z (or AN). A subshift X is unambiguously determined by the language 

L(X)  -- {u ~ A*I m,n ~ Z or N, z ~ X: x(m,n) = u}; this way a language with 

the right, almost trivial properties defines a subshift of A z and a subshift of A N. 

When not otherwise specified, a subshift is supposed to be in A z. For u E L(X),  

denote by [u I the set {z] z(0, lul - a) = u}. 

A t r a n s i t i v e  subsh i f t  is one such that for any u, v E L(X) there exists w q A* 

such that  uwv E L(X). 

A f a c t o r  m a p  is a continuous, onto, shift-commuting map ~0 : X --* X' ;  in 

this case X '  is a f a c to r  of X and X an e x t e n s i o n  of X' .  A conjugacy map is a 

one-to-one factor map: when there exists such a map, X and X'  are said to be 

c o n j u g a t e .  Elements of qo-l(z) are called l i f t s  of x. A b o u n d e d - t o - o n e  factor 

map is such that for z in X' ,  the number of its lifts is bounded by some k. 

AUTOMATA AND TRANSDUCERS. 

An automaton A consists of: 

---one finite alphabet A. 

----one finite set of s t a t e s  C. 

- - a  directed graph on C, the arcs each having a label in A. 

To a path in the graph, one associates its label ,  i.e. the word spelled by 

concatenating the labels of its arcs (usually from left to right, but the natural 

automata for multiplication by an integer work from right to left); the set of 

labels is called t h e  l anguage  r ecogn i zed  by  t h e  a u t o m a t o n .  When using 

the automaton to recognize this language, all states are initial and final. But 

there is another, more complicated, word one may associate to a path: to any 

arc, associate the couple (a, c) of its label a and the origin vertex c. Then do 

the same for the path by concatenating all corresponding couples. The language 

thus recognized may be called simply the l anguage  o f  ,4. 

Each of these languages defines a subskift: they are the f a c t o r  su b sh i f t  X C 

A z and the a u t o m a t o n  subsh i f t  Y C (A x C) z associated to A. Elements of 
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these subshifts correspond to infinite paths in the graph: an element of X is the 

label of such a one, and an element of Y is the pair consisting of the sequence 

of vertices and the label of ma infinite path. These two subshifts have particular 

properties (Y is a subshift of finite type; X must be at least sofic). A defines 

a mapping ~0 from Y to X by projection on A of coordinates of ! /E  Y. It is of 

course a factor map. It is convenient, though not strictly correct, to call also ~0 

the corresponding projection map from (A x C)* to A*. The same definitions 

are fitting for simply infinite sequences. 

An automaton ,4 is said to be d e t e r m i n i s t i c  if, given a E A and c E G', 

there is at most one arc starting from state c with label a. It is said to be 

n o n a m b i g u o u s  if there is at most one path with given label from one state 

to another. Deterministic automata are nonambiguous, but the reverse is not 

true. For a deterministic automaton, one defines a partial map from O x A* to 

O: (c, u) --* c' = c.u, every time there is a (unique) path starting from c, ending 

in c', with input label tt, on ,4. 

An automaton is said to be i r r educ ib l e  if its graph is strongly connected, i.e. 

if for any two states c, c', there exists a path joining c to c' in the graph. If ,4 is 

irreducible, subshifts Y and X are transitive. 

A transducer may be viewed as an automaton having two labels for each arc, 

or rise as two automata sharing the same graph; it is often called a 2-antomaton. 

More precisely, a l i t e ra l  t r a n s d u c e r  T (there are more general transducers we 

shall not consider in this paper) consists of: 

1. two finite alphabets A and B; 

2. one finite set of states G; 

3. a directed graph on C, 

the arcs each having an i n p u t  labe l  in A and an o u t p u t  labe l  in B. 

To a transducer one naturally associates two label languages, the i n p u t  and 

o u t p u t  l anguages ,  and two factor subshifts, the i n p u t  and o u t p u t  subsh i f t s  

X and X' .  The transducer subshift is defined as in the case of an automaton, 

but its symbol space is the product A x B x C. The definition of irreducibility 

is the same. One also defines inpu t -  and o u t p u t - d e t e r m i n i s t i c  transducers, 

transducers which are nonambiguous for input and output.  A d e t e r m i n i s t i c  

t r a n s d u c e r  is one which is input- and output-deterministic. 

Example  1.1: Here is an example of an input-deterministic transducer which is 

not output-deterministic, but  nonambiguous for output;  it is also irreducible. In 
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this case X is the set of all sequences avoiding words 012"+10,n E N;X I is the 

set of all sequences avoiding word 11. | 

0/0(~ 110 _ 

111 
An automaton ,A is said to be b o u n d e d - t o - o n e  (or a transducer T b o u n d e d -  

t o - o n e  fo r  i np u t )  if the factor map ~o is bounded-to one. The corresponding 

definition applies to output.  When the automaton .A is irreducible, map qo is 

bounded-to-one iff .A is nonambiguous [B]; in the reducible case nonambiguous- 

ness is a sufficient condition for 7~ to be bounded-to-one. 

Given a transducer T ,  an element x ~ E X ~ is said to be a t r a n s d u c e d  i ma g e  

of x E X if they have a common lift: ~ - l ( x )  N ¢-1(~, )  ¢ $. 

A transducer, especially when nonambiguous for input and output,  defines 

a topologically significant relationship between its input and output  subshifts. 

Two subshifts are said to be f in i te ly  equ iva len t  [P3] if they have a common 

bounded-to-one extension. If X is the input and X ~ is the output of a bounded-to- 

one transducer, they are obviously finitely equivalent on account of their common 

extension Y. Finite equivalence creates a relation between points of X and points 

of X~: x and x ~ are r e l a t e d  if they have a common lift in Y; a transduced image 

is a special case of this situation. We shall also encounter subshifts having a 

common extension (not necessarily bounded-to-one): this extension is called a 

j o in ing  of the two. In this case points having a common preimage may also be 

called related. 

MEASURES. Here we state all relevant facts about invariant measures on a 

compact metric space such as a subshift. Proofs, and other interesting properties, 

will be found in [DGS, K]. An invariant measure/~ on subshift X is such that 

/~(a-l([u])) = #([u]) for u e L(X). Recall the set M(X)  of probability measures 

on X is a compact metric space for the topology of weak convergence, and the set 

27(X) of invariant probability measures on X is always nonempty and compact. 

Ergodic measures are those invariant measures for which a-invariant sets have 

probability 0 or 1. The (topological) s u p p o r t  of an invariant measure/~ on X is 

the intersection of all closed invariant subsets of X having measure 1; its e n t r o p y  
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is the nonnegative number 

• 1 
h.  = limo¢- ~ ~ / ~ ( c ) l o g / ~ ( c )  

¢EC. 

where C ,  - {[u]l u 6 L(X),  lul = n}. The set of measures with maximal entropy 

on a subshift is always nonempty; when it is a singleton the subshift is said to 

be in t r in s i ca l ly  e rgod ic .  

For any subshift X,  x 6 X and f 6 C(X),  define the measure S,(x)  by the 

formula 
n--1 

1 

S . ( x , / )  = n 
i=0  

A point x E X is said to be gene r i c  w i t h  r e g a r d  to  t h e  inva r i an t  mea-  

su re /~  on X,  or simply y-generic, if S , (x )  converges weakly to ~u as n goes to 

infinity; Birkhoff's pointwise convergence theorem states that  if # is an ergodic 

measure on X,  #-a.e. point in X is/~-generic. As genericity is an asymptotic 

property, depending only on nonnegative coordinates of x E X,  it is perfectly 

defined for sequences in A N. When X = A N and # is the Bernoulli measure A 

with probability 1 / # A  for each symbol, a generic x is called n o rma l .  Recall a 

real number r 6 [0,1] is said to be n o r m a l  to  t h e  base  p if the asymptotic 

distribution of the sequence rp"( rood 1), n E N, is the Lebesgue measure; this is 

equivalent to normality of its expansion in base p. Normal sequences are often 

called equidistributed in the literature. 

Define A4(z) as the set of measures a s soc i a t ed  to  z, or limits of (S~(x)),EN 

for the weak convergence of measure. Compactness implies it is always nonempty. 

Any measure in A4(x) is invariant; x is generic for ~ iff A4(x) = {#}. 

Assuming ~: Y ~ X to be a factor map, denote by/l~: A4(Y) ~ A4(X) the 

corresponding map for measures: ¢ (y)  = y o ~-1.  Map • is weakly continuous 

and shift-commuting. As a consequence, A4(~x) = ¢(A4(x)) and if y 6 Y is v- 

generic, 7~(y) is ¢(v)-generic. Just as in the case of points, a llft of an invariant 

measure ~ on X is an invariant measure v of Y such that ¢(v)  = #. 

A transducer, and more generally any kind of joining, acts on invariant mea- 

sures in the same way as on points. A measure/~' on X '  is said to be r e l a t e d  to  

(when the joining is defined by a transducer, a t r a n s d u c e d  i ma g e  of) measure 

/~ on X if there exists v • A4(Y) such that ¢(v)  = # and ~(v)  = / (i.e. if they 

have a common lift)• 
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There is no essential difference between the theory of inwriant measures on 

subshifts of A z and subshifts of A N. Definitions are identical, so there is a 

one-to-one correspondence between invariant, or ergodic, measures on a simply 

infinite subshift and its doubly infinite version. Properties are the same. For 

instance, genericity may be considered as a property of a doubly infinite sequence, 

but it depends only on its restriction to positive coordinates. For the sake of 

convenience, results are stated for doubly infinite sequences in sections 2 and 3; 

they are applied to number expansions in some of the examples. | 

2. Preservation of  genericity for related points or transduced images 

We first prove a general statement on genericity for two subshifts having a com- 

mon extension. 

PROPOSITION 2.1: Let subshifts X and X '  have a common extension Y through 

/'actor maps ~ and ¢, and p be an invariant measure on X .  

(1) f i x  is p-generic and x' is related to x, then any measure in J~4( x') is related 

to #. 

(2) if  there is only one measure pl related to p, and x is p-generic, then any x ~ 

related to z is pC-generic. 

Proof." 

(1) p' E .M(z') means there is an infinite subset E C N on which Sn(z ' )  

converges weakly to p~. As x ~ is related to x, there exists y 6 Y with 

qa(y) = x and ¢(y)  = z ' .  Consider the set of measures {Sn(y) ,n  6 E}: 

since ,&I(Y) is compact, there is a subset E '  of E on which Sn(y) converges 

weakly to some invariant limit u. Continuity of • and g2, together with 

~(y) = z and ¢(y) = x',  imply ¢(v)  = p and g2(v) = p': so p and p' are 

related. 

(2) The assumption implies AA(x') C {#'}. Thus by compactness of A,4(X') 

any subsequence of Sn(z ')  tends to a limit which by statement (1) must be 

p~: hence the sequence itself tends to p~. | 

These results are also valid for extensions: just put X ~ = Y ,  ¢ = Id. 

From Proposition 2.1, 2 we shall deduce two different results, Proposition 2.2 

and Corollary 2.6. Proposition 2.2 is fairly general as far as subshifts are con- 

cerned; its proof is based on an entropy argument. An answer to Rauzy's question 

may be deduced from it. 
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PROPOSITION 2.2: Let X and X ~ be flnitely equivalent subshifts with common 

extension Y and factor maps ~: Y --* X and ~b: Y --* X ' ,  and suppose they are 

intrinsically ergodic with maximal measures # and #~. Then i f  z is generic for g, 

any related x ~ is generic for #~. 

Proposition 2.2 might be proved in several ways, some of them certainly more 

satisfying than the one we chose. The following classical statement is essential 

for this proof (see [P2]). 

PROPOSITION 2.3: Let ~ be a bounded-to-one/actor map from subshift Y to 

subshi£t X ,  and ~, be an invariant measure on Y .  Then hv = h~(v). 

Proof of Proposition 2.2: We want to show the only measure on X ' related to 

/~ is/~,. As Y is a subshift, the set .h,~,(Y) of invariant measures with maximal 

entropy is nonempty. Applying Proposition 2.3 to factor maps ~ and ¢, and 

intrinsic ergodicity of X and X ~, one obtains the equivalence of the three following 

statements: 

- -v  • M~(Y); 

= 

= 

As a consequence, #~ is the only measure on X ~ related to #. Conclusion follows 

from Proposition 2.1, 2. | 

Of course when X -- X ~ this implies/~ = #~ and it is genericity with respect to 

this measure which is preserved. We first apply Proposition 2.2 to nonambigu- 

ous, hence bounded-to-one, transducers, and then give one counter example to 

illustrate the importance of the entropy hypothesis implicit in finite equivalence. 

All subshifts recognized by some finite automaton (sofic systems) are known 

to be intrinsically ergodic provided they are transitive IF]; in particular, A z itself 

is obviously intrinsically ergodic. This remark, and Proposition 2.2, imply the 

following statement, which contains the answer to Ranzy's question. 

COROLLARY 2.4: Suppose transducer ~" is nonambiguons /'or input and output, 

and X and X '  are transitive; let ~ and ~' be the measures with max/real entropy 

on X and X ' .  Then any transduced image of a #-generic point is #'-generic. In 

particular, when X = X '  = A z, i f  z is normal, any transduced image of z is also 

norinal. 
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The assumption that X,  X '  and Y have the same topological entropy is es- 

sential in some way. When this is not the case, even supposing X and X '  are 

intrinsically ergodic with the same maximal entropy, the lifts of measures/~ and 

tt' may be distinct subsets of Ad(Y), so the proof no longer works. 

Example  2.5: Here is a transducer with input and output X = {0,1} z, but  not 

bounded-to-one for input or output,  and for which the conclusion of Corollary 2.4 

does not hold. Let C = {a, b, c}, ~ and ¢ be the two factor maps, only depending 

on the states, defined by 

~: a,b ~ O; c ~ 1 .  

¢: a --* O; b,c---,1. 

0/0~ 0/0 ~ (~0/1 
0/1 

1/1 

Suppose x E X is generic for #: this means a on one hand, b and c on the other 

hand have the same frequency for Y E ¢ -1 (z ) ,  but  for y E ~ - l ( z ) ,  it means a 

and b on one hand, c on the other hand have the same frequency. Thus most 

transduced images of a generic z cannot be generic for #. 

In the proof of Proposition 2.2, topological entropy is a clumsy tool: the proof 

only works for the unique measure with maximal entropy. What  about, for 

instance, generic points for some nonuniform BrenouUi or Markov measure on 

the full shift? Fortunately, by using different methods, one can answer this 

kind of question when the finite equivalence is defined by certain transducers, 

for a large class of ergodic measures having some common feature with the one 

with maximal entropy. We first prove an abstract statement on preservation of 

genericity by bounded-to-one extensions. The measures are just supposed to be 

invariant, but  in fact our examples require ergodicity. 

COROLLARY 2.6: Let X be a factor of the subshift Y through map ~, and 

suppose # is an invariant measure on X having a unique lift v on Y.  I f  z E X is 

#-generic, then any lift y of z is v-generic; i f  X '  = ¢ ( Y ) ,  x' = ¢(y) ,  then x'  is 

~ (  v )-generic. 
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Proof." The first statement is a direct consequence of Proposition 2.1, 2. For 

the second, uniqueness of v implies ~I'(v) is the unique invariant measure on Y 

related to p. | 

And now, what about measures on X with entropy strictly less than the max- 

imum? Proposition 2.7 below shows some instances in which Corollary 2.6 may 

be applied; others are to be found in section 4. For an ergodic measure p on a 

subshJft, call Gp the measurable set of p-generic points. Let 7~ be a factor map 

from subshift Y onto subshift X. 

Definition: An ergodie probability measure p on X is said to have p r o p e r t y  T 

(with respect to ~) if it has an ergodic lift v on Y such that for any measurable 

F C Y, p(9(F))  > 0 implies v(F) > O. $ 

Now we prove that  measures having property T fulfill the assumptions of Corol- 

lary 2.6. 

PROPOSITION 2.7: Let ~ be a factor map from Y to X.  Suppose p is an ergodic 

measure on X having property T. Then v is the unique lift of p. 

Proo~ Birkhoff's ergodic theorem states that v(Gv) = 1. Suppose there exists 

an invariant v' ~ v on Y, with ¢(v ')  =/~. The probability v'(G,) cannot have 

value 1: v'(Gv) = 1 would imply v' is ergodic, since Cesare means converge v'- 

a.s. to constants; then by Birkhoff's theorem this ergodic measure would have to 

be v, contradicting the hypothesis v' ~ v. So v'(G~) > 0. As G~ C ~-I(~(G~)) ,  

this implies v'(~-l(~(Ge~))) > 0, or equivalently p(~(G~)) > 0 and, by property 

T, v(Ge~) > 0. This contradicts ergodicity of v. | 

The next Proposition yields many examples of measures having Property T; 

actually, the hypotheses so obviously imply uniqueness of the lift that it is not 

necessary to use Proposition 2.7. A transducer (preferably nonambiguous for 

input) is said to be ( input-)  synch ron iz ing  if there exist a state c and an input 

word u = u~u " such that  any path in the graph with label u must reach vertex c 

at the end of prefix u'; in this case u is a synch ron iz ing  word .  Assuming ~" to 

be input-synchronizing, an ergodic measure p on X is said to be synch ron i z ing  

if p([u]) > 0 for some synchronizing word u E A*. For instance, in Example 1.1 

word 0 is synchronizing for input and 1 for output. 

PROPOSITION 2.8: Suppose transducer yr is nonambiguous for input and input- 

synchronizing, and p is a synchronizing measure on X.  Then p has property 
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T, and there exists a measure p '  on X '  such that any transduced image of a 

p-generic point is p'-generic. 

Proof." One shows first ~hat since p is synchronizing, it has a unique lift v on Y, 

possessing property T: as p-a.s, z E X has infinitely many  occurrences of some 

synchronizing word to the left and right, for given n E Z, one can find nl ,  n2, 

nl < n < n2, such that  the state coordinate at times nl  and n2 is necessarily c; 

as ~" is nonambiguous for input, this means all s tate coordinates are determined 

between nl and n2; so, again p-a.s., z E X has only one lift in Y. This defines a 

unique lift of p on Y; but this also means that  for any measurable E E Y, one 

has v (E)  = p o ~(E):  this equality implies Property T. 

One concludes the proof by applying Corollary 2.6. II 

Example 2.9: Here is a first, simple, example of a measure p on X having several 

lifts on Y when considering transducer ~'. In this case there are p-generic points 

having no generic transduced images (for whatever transduced measure). 

Consider the following transducer, for which X is the full shift on {a, b} and 

X '  is the subshift on {a',a",b} defined by excluding words a'a", a"a'; a'bna ', 

a"b"a" for n odd, a'bna '', a"bna ' otherwise. 

b/b 
Let p on X be the Dirac measure on the fixed point on letter a. This ergodie 

measure has two transduced images, one the Dirac measure on a', the other the 

Dirae measure on a". It is obvious the sequence 

z = a/O)ba/(2)b.., a/(n-1)baf(")b... 

is generic for p if f(n) goes to infinity with n; but supposing 

i - ,  o, 
f(n) i<n 

neither of the two transduced images of z is generic for any measure. 

3. Continuity properties and (k, ~)-normality 

In this paragraph,  we address the question of preservation of almost genericity, 

and draw some consequences. 
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The notion of (k, e)-normality was first introduced in [Bes] in a finite setting; 

it has a perfectly natural equivalent, for any invariant measure, in the field of 

infinite sequences. 

Definition: Given an invariant measure p on A z, k E N and e > 0, x E A z is said 

to be (k, ¢, p)-generic if there exists no such that whatever u E A k, for n > no, 

fS,,(x, [u])-p([u])[ < ~. A (k, e, p)-generic word is a word v = v o " . V N - 1 ,  g > k, 

such that whatever u E A k, if E(u, v) = # {Jl 0 <_ j < g - k, vi . . . vi+k_l = u}, 

then I E ( u , v ) / g  - p(u)l < ¢. An element x • X is (k, e, #)-generic iff the words 

z(0, n) are (k,  )-generi¢ for n large enough. 

Before going on, we must first define the natural distance corresponding to the 

topology of weak convergence on AJ(X). After that we point out the relationship 

between this distance and (k, e, p)-genericity. 

Let Cn be the set of cylinders corresponding to coordinates - n  to n. For 

p, p' C Ad(X), set 

o o  1 
d(#,#')  = Z - - - "  sup I t ( c ) -  p'(c)l. 

k=l 2~ ,ech 

The distance d endows .M(X) with the topology of weak convergence, as is 

easily checked by applying the definitions. The following 1emma characterizes 

(k, e, p)-genericity in terms of weak convergence. 

LEMMA 3.1: Given 6 > O, there exist k 6 N and e > 0 such that whenever 

z • A z is (k,e,~t)-generic, then Ad(x) C B(I~,5). Conversely, for given k, e, there 

ex/sts 5 such t h a t / f A d ( z )  C B(~,5), then z must be ( k,e,~t)-generic. 

Proof." 1) Given 5, choose k such that for any two measures p,/~' • Ad(X) the 

partial sum of the series d(~,~') is less than 6/2 for words with length greater 

than k. Then choose e small enough for the partial sum of the series for words 

with length less than or equal to k to be also less than 6/2. Thus When z is 

(k, e, p)-generic one has d(p, p') < 2.5/2 for any/~' • Ad(z). 

2) Suppose x is not (k, e, /~)-generic: there exist u • L (X) ,  lul = k, and an 

infinite subset E C N such that 

Isn(z, [u]) - > f o r ,  e E. 

As Ad(X) is compact, there are an infinite E '  C E and an invariant measure 

pl such that S , ( x )  ---* #1 along E' in the sense of weak convergence. Thus 
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- >- a n d  > S e t t i n g  6 = 2-k-1~, this means/~1 

cannot belong to B(#, 6). II 

This implies in particular that a/~-generic point is one that is (k, ~, #)-generic 

for all (k, e). We now prove an elementary refinement of the classical result that 

a continuous bijection between two compact sets is also bicontinuous. This result 

is probably known and applied in some field, though we could not find it in the 

literature. 

LEMMA 3.2: Let K,  K' be two compact spaces, ~o : K ~ K' be continuous and 

onto, and suppose k' q K '  has a unique preimage k in K .  For any open set U 

containing k, there exists an open set U' containing k' such that ile~0(kl) q U' ,  

then kl q U. 

Proof." Let U C K be an open set containing k. On account of compactness of 

K,  ~(U c) is closed; it cannot contain k' since the unique element with image k' 

is in U. Thus (~(UC)) * is an open neighborhood of k' with preimage contained 

in U. | 

Now we may prove the main result of this paragraph. 

PROPOSITION 3.3: Let subshifts X and X' have a common extension Y tlwough 

factor maps ~ and ~,  v be an invariant measure on Y ,  g = ~(v) ,  I~' = ¢2(t,); 

suppose furthermore t, is the un/que Lift of/~. Then for any k E N, c > 0, there 

exist k' E N, d > 0 such that i f  z E X is (k ' ,d,g)-generic any lift y is (k,~,v)- 

generic. The same is true when one replaces V by z' E X ' ,  related to z,  and v by 

Proo£" Lemma 3.1 states that it is equivalent for V to be (k, ~, v)-generic and for 

the distance d(v, t /)  to be less than some 6, whatever t / E  .hd(V). 

Apply Lemma 3.2 to the compact metric spaces J ( Y ) ,  J ( X ) ,  the continuous 

map ~, and measures v and/~. Thus for any g > 0, there exists 6' > 0 such that 

if ~o(ul) =/~1 and d(/J,/~x) < 6', then d(v, u,) < 6. 

To finish the proof there remains only to use the direct part of Lemma 3.1 and 

choose values of k' and d corresponding to 6'. The second statement is derived 

from the first by continuity of ~.  | 

To illustrate this and for further use, let us give a derived statement in the case 

of a transducer (certainly not the best we can get, but sufficient for our needs). 
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The three subshifts Y, X, and X ~ recognized by an irreducible transducer are 

known to be intrinsically ergodic [F]. 

COROLLARY 3.4: Let ~- be an irreducible bounded-to-one transducer, wi~h p 

and pl the measures with maximal entropy on X and X ' .  Then the conclusion of 

Proposition 3.3 holds. In particular, when X = X I = A z, and A is the uniform 

measure on X and X I, given k I and e I, there exist k and e such that i f  x is 

( k, e, p)-generic, then any related x' is ( V , ~', ,')-generic. 

Proof." Intrinsic ergodicity of X and Y, together with Proposition 2.3, imply the 

unique lift of p is the unique measure v with maximal entropy on Y; the same is 

true for pl. Proposition 3.3 then concludes the proof. | 

Remark: We know a much longer, combinatorial proof of Corollary 3.4 when 

X = X I = A z, and p = plA; it does not require irreducibility for 9 v, nor even 

intrinsic ergodicity of Y, and suggests an implicit correspondence between (k, e) 

and (k I, d) which might be of some use. | 

4. E x a m p l e s  a n d  app l i ca t ions  

A. APPLICATIONS TO NUMBER THEORY. 

1. PROPERTIES OF MULTIPLICATION TRANSDUCERS. Now we want to inves- 

tigate relevant properties of multiplication transducers, so as to be able to use 

results obtained in the last two sections for number-theoretical purposes. The 

following results do not pretend to originality; as many arithmeticians seem not 

to know about them, we think it is better to give them here. 

The transducer .T'k,p of multiplication by k in base p is just a representation of 

the usual algorithm. Each of the sets A and B is equal to {0, 1 , . . .  ,p - 1}. The 

state set C is just the set of all possible values of the carry. Like the algorithm, 

the transducer acts from right to left. 

Call Cn the carry at time n. The following formula yields the output bn at time 

n, when one knows the carry and input an at the same time: 

(1) bn = kan + cn(mod p) 

Putt ing .f(n) = [n/p]), from (1) one deduces the recurrence formula 

(2) c . -1  = fCCk.. + on)); 
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just remark the fractional part {(kan + c , ) /p }  is just 1/p times the output bn. 

An immediate consequence of (2) is that  the carry may always be chosen less 

than k. As cn-1 is a nondecreasing function of c,, and an, it is sufficient to check 

cn-1 < k for cn = k - 1 and an = p - 1. Applying (2), one gets 

c = y ( ( k ( p  - 1 )  + k - 1 ) )  = y ( k p  - 1 )  = k - 1. i 

The graph of ~'k,v, together with the input labels, can be deduced from (2). 

Formula (1) gives the output labels. Formula (2) also testifies that 5rk,p is always 

input-deterministic (this only means once the input and carry at time n are 

known, then one can deduce the carry at time n - 1). Now, need all states from 

0 to k - 1 be considered, or will some proper subset be enough? One could do 

without the next Proposition, only proving the result for k _< p, and restricting 

~'k,p to the strongly connected subgraph containing state 0 for all other cases. 

But this connected component is in fact equal to the graph itself. 

PROPOSITION 4.1: The graph of  multiplication by k in base p, where C is the 

set of a//carries from 0 to k - 1, is always irreducible and synchronizing for input. 

Proof: Fix a base p > 1. We first show that given k > 0 there exists an integer 

q such that  in ~'k,p, starting from any carry, the input word 0q leads to carry 0. 

Suppose an = 0 and cn > 0; then (2) implies cn-1 = [cn/p] < cn: input 0 strictly 

diminishes the carry at the next step. If an -- 0 and cn = 0, cn-1 is obviously 0. 

This means any path with input label 0 I'-1 is a synchronizing word, and 0 may 

be reached starting from any state in the graph. 

The same is true for state k - 1 and word (p - 1)" for some n. It is sufficient 

to show that  if 0 < c < k - 1, then e' = f ( c  + k(p - 1)) > c, because if this 

implication is true, as we already know that f ( ( k (p  - 1) + k - 1)) = k - 1, input 

( p -  1) k-1 necessarily leads from any state to the maximum k - 1. So assume 

0 < c < k - 2 ,  i.e. k _> c + 2 .  Thus c' >_ f ( c + ( c + 2 ) ( p -  1)) = f ( c p + 2 p - 2 ) ,  but 

as p - 2 > 0, the last term is equal to c + f (2p  - 2) > c + f (p )  + f ( p  - 2) > c + 1. 

In order to prove any state in C can be connected to any s ta te ,  there remains 

now to show any state in C can be reached starting from 0. We shall do this 

by induction on k. Let us call E the set of all integers k for which ~k,p has this 

property. Also, c is said to be k-accessible by input u if there exists a path  from 

0 to c with input label u in ~'k,p. 
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The  initial  s tep is a l ready made,  because ~'k,p has only two s tates ,  0 and  

k - 1 = 1, and  we jus t  proved these are k-accessible in any  base.  

Now, assume tha t  k E E:  to any carry  c < k - 1 one can associate  a sequence 

of inputs  u = t qu2 . . ,  u,, E { 0 , . . . ,  k - 1}*, such tha t  c is k-accessible by  it..~'k,p 

is determinist ic ,  so u complete ly  determines  the s ta te  ci of  the  t ransducer  af ter  

input  u lu2 . . . u i ,  i < n, s tar t ing  f rom co = 0 and  arr iving to cn = c. One m a y  

assume no two s ta tes  among  the  (ci) are identical, or else there  would exist a 

shor ter  word u '  having the same p rope r ty  (in par t icular ,  ui # 0). But  u is also 

an input  for ~'~+Lr,  so tha t  one can define the s ta te  c~ in which ~'k+l,r  is after  

input  ulu2 . . . u i .  For c'  = c~, we want  to prove 

(3) c < c' < c +  1. 

' I t  is evident for co = c~ = 0. Now We do this by  induct ion on ci and c i. 

suppose  it is t rue  for i: Ci+l = f (ku i  + ci), and c~+ x = f ( ku i  + ui + c~) is 

obviously non-smal ler  t han  ci+l; also c~+i < f (ku i  + ci + 1); as ui + 1 < p, 

c5+1 _< f(ku  + cO + 1 = + 1. So (3) is true. 

There  remains  to make  use of (3) in order  to prove the  general  s tep of the  

induction.  To show tha t  s ta te  i (0 < i < k + 1) is k + 1-accessible, it is sufficient 

to check there  are j and  r, 0 < j < p and  0 _< r < k + 1 such tha t  

a) r is k + 1-accessible by  input  u, 

and  

b) f ( j ( k  + 1) + r )  = i. 

If  this is t rue,  i is (k + 1)-accessible by  input  uj. 

Choosing the  only value of j such t ha t  j ( k  + 1) < pi < (j  + 1)(k + 1), pu t  

c = pi - j ( k  + 1) < k + 1. There  are two cases: 

---ei ther  c < k. So by  hypothesis  c is k-accessible by  a cer tain input  u. Choose 

r = c'. Apply ing  (3), r < k + 1 and  f ( j ( k  + 1) + r )  = f (pi  + d), d = 0 or 1. Thus  

f ( j ( k  + 1) + r) = i. 

---or c = k. But  we know tha t  k is k + 1-accessible by  a cer tain input  (p - 1) n. 

So choose r = c, and  i is (k + 1)-accessible by  (p - 1)nj.  

Thus  k E E implies k + 1 E E ,  and  the  result  follows. | 

We shall examine  ou tpu t  proper t ies  of the t ransducer  only in two par t i cu la r  

cases: they  are sufficient for our  needs. 
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LEMMA 4.2: If k and p are relatively prime, Jrt,r is output-determinlstic and, 

given b q B, c E C, there exists exactly one arc starting from c with output label 

b. 

Proof: As k and p are relatively prime, Formula (1) defines a bijection on Z/pZ.  

So arcs starting from state c and corresponding to distinct inputs must have 

distinct outputs. As there are exactly p arcs starting from c, all with distinct 

inputs, this means all outputs are obtained, each for one arc only. | 

It is easy to show that ~'k,r is never output-synchronizing when k and p are 

relatively prime. 

Example 4.3: This is the graph of ~-3,2: 

o,% ,,,_. @ ,,o 
0/1 0/0 

The following Lemma means when k divides p, ~-k,p is nondeterministic for 

output but, given a doubly infinite sequence of output letters, there is only one 

way to choose the corresponding carries. 

LEMMA 4.4: Suppose p = kq, q E N. Then: 

1) Given b E B, there is only one state c accepting b as an output. 

2) Given b E B, the corresponding state c and any c' E C, there is an arc from 

c to c' with output b. 

3) -~},,r is nonarnbiguous for output. 

Proof: 

1) If a, a' E A, d = a (modq), then the two corresponding output letters 

starting from c are the same: from equality a' = a + qr and Formula (I), one 

gets b = ka + c(modp), b' = ka + kqr + c = b(modp). This proves there are 

only q possible outputs for arcs starting from c, and also there are exactly k arcs 

starting from c with given output b. There are k states in C, q possible outputs 

from each state and a total number of p = kq outputs: this implies there is only 

one state accepting b as an output. 

2) Supposing c E C, a' = a + qr with r > 0, the two arcs starting from c 

with inputs a and d have the same output but end in different states. Applying 
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formula (2), the end vertex corresponding to input a I is 

y(ka + kqr + c) = / ( k a  + c) + r > / ( k ,  + c), 

where the last term is the end vertex corresponding to input a. Thus the p/q  = k 

arcs with given output b starting from c end in all the k distinct states of C. 

3) Given output b, the only state c accepting b as an output is completely 

determined: this implies given the label of a path, only the end vertex is not 

determined; one concludes the proof by remarking all arcs with label b end in 

different states. | 

Example  4.5: Multiplication by p in base p just corresponds to the shift to the 

right on expansions: it is too trivial to be considered an example. Here is a less 

trivial one; this is the graph of ~'2,e: 

0/0, 1/2, 2/4 3/0, 4/2, 5/4 

0/1, 1/3, 2/5 

3/1,4/3, 5/5 

PROPOSITION 4.6: I£ r is a rational, for any k, e there exist k', d such that i f  x 

is (k',,', ~')-norm~ then ,= is (k, ,, ~)-no~-~.  

Proof.: Given base p and multiplier k, decompose k into the product of an 

integer h relatively prime to p, and of a finite sequence a , . . . ,  !¢ of divisors of 

p. By Proposition 4.1 Corollary 3.4 may be applied to deterministic transducers 

.T'h,p, ~'~,p,.-., ~-,,,p. This proves the result for multiplication by an integer. To 

get the same result for division by k, apply Lemma 4.2 to ~'h,p, Lemma 4.4 to 

the other transducers and then Corollary 3.4. Remarking this is true for any k 

concludes the proof. | 

2. ADDITION OF A RATIONAL. It is also well known that addition of a rational 

preserves normality (see[R1D. But this operation may also be performed with 

the help of a transducer. 

Let r E Q, p E N, A = { 0 . . . p -  1} and co. . .cn-1 be one ultimate periodic 

pattern of the expansion of r in base p. The following formulas describe the graph 
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of an input-deterministic transducer ,9 acting from right to left (it represents the 

usual addition algorithm, applied to this particular case): 

bi = al + ai + ei (modp), 

0~i--1 ~ Ok--1  rood rt for ai  = ok, 

= + + 'd /p ] ,  

where ai and bi are the input and output at time i, both belonging to A, ai • 

{ci, 0 < i < n} marks the position of the index relative to the periodic pattern 

of the expansion of r at time i, and e • {0,1} is the carry. 

It is easy to check S is irreducible and deterministic for output, so all results 

in sections 2 and 3 may be applied to its action; of course, in most cases S does 

not perform exactly addition of r, because the expansion of r is only ultimately 

periodic, but its output is equal to the expansion of z + r  but for a finite number of 

coordinates, so asymptotic properties like normality are preserved. In particular, 

addition of a rational preserves "almost normality". 

B. MARKOV MEASURES. 

Now let us consider the case of Markov measures. From now on assume ~" is 

an irreducible input-deterministic transducer with input automaton A, and input 

subshift X is of finite type with excluded words of length at most 2. We suppose 

g is an irreducible homogeneous (i.e. invariant) Maxkov measure with transition 

probability (P~a,), a, a' E A, and with topological support X: this means X is 

defined by excluding words aa' with pa~, = 0; and we want to find a measure 

v on Y such that any lift of a/~-generic point is v-generic. Before we construct 

such a measure, we must prove a lemma on finite automata. 

LEMMA 4.8: Suppose .,4 is irreducible and deterministic, and X oif finite type, 

defined by excluding words of length at most k. Then for any path with length 

k - 1, from state c to state d,  having/abe/m,  for any a E A, d.a is defined i/i r 

ma • L(X). 

Proof." If the conclusion is false, there exists a path from c to d with label m, 

such that ma • L ( X )  by d.a is undefined. We construct an infinite sequence (cn) 

of distinct states and a sequence (ran) of words, with ran-1 a prefix of m,,, such 

that,  for any n, any i < n, cn.mi is defined but c , . m ,  is not, thus contradicting 

the finiteness of state space C. 
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Put Co = c, mo = ma. Given c,,-1 E C, rn,,_l E L(X) ,  choose cn such that  

i such that c,~.mn_lrnk = Co. cn.mn-1 is defined, and, using irreducibility, m n 

Set m n =  mn_lm~rna: its prefix m,~_lm~rn checks cn.mn_lm~m = d,  hence 

belongs to L(X); as X is defined by excluding words with length less than k + 1, 

and Iml = k - 1, there remains to check ma belongs to L(X): this is true by 

hypothesis. But cn.mn = co.ma is undefined. | 

The next Proposition is closely connected with results of [F] concerning the 

measure with maximal entropy on sofic systems: 

PROPOSITION 4.9:  Let ..4 be an irreducible deterministic automaton, with X a 

subshift of finite type defined by excluding words with length 2, I~ an irreducible 

invariant Markov measure on X ,  with support X .  Then 

(1) There exists a unique lift v of I~ on Y.  It is an ergodic Markov measure 

having Property T. 

(2) The transition probability of v is deduced from that of I~ by the forrnu/a 

p.~, = p . . ,  for a = (a, c), a '  = (a', d)  and a a '  E L(Y) .  

Proof: Let D be the set of a l l a  = (a,c) E A x C s u c h t h a t  there is an arc 

starting from c with label a; Y is the subshift of finite type on D defined by 

excluding all words aa ~ with c.a # d. 

(a) Let us first build up a Markov measure o n  Y satisfying (2). We must check 

the [D[ x [D[-matrix M defined by 

Ma'a  = paa' whenever a a '  E L(Y), 0 otherwise, 

is equally stochastic, i.e. for any a = (a, c) E D, the sum of transition probabili- 

ties p, , ,  on set {d: a '  = (d ,c ' ) ,  aa'  E L(X)} is equal to 1. For a, a '  E D, the 

condition oLa' E L(Y)  is equivalent to c.a = d.  By Lemma 4.8, (c.a).d is defined 

i f fa£  E L(X): as/~ is a Markov measure ~aa'~L(x)Paa' = 1, so M is a stochastic 

matrix. As A is irreducible, and to any arc in the graph is associated a positive 

transition probability, M defines an ergodic Markov measure u (with support Y): 

let V = (v~)~ED be the unique eigenvector of M with norm 1 corresponding to 

eigenvalue 1. All its coordinates are known to be positive [G]. The formula 

v([w]) = v(ao,co)p,,o,,l" "p., ,_,. .  for w = (ao,eo)..  "(an,cn) E L ( Y )  
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defines a probability v on Y; v is invariant because V is an eigenvector of matrix 

M, ergodic because it is possible to prove v([w]) > C. p0~0([w]) for some constant 

C. 

(b) We must check ¢(v)  = p,i.e. (¢(v))([u]) = p([u]) for any u = a o . . . a ,  • 

L (X) .  One has 

(1) (0(.))([.1) = (~,,~c,,(ao, c ) ) p . o . , ' ' - p , . _ , . . ,  

defining v(a, c) to be 0 whenever (a, c) ¢ D Since V is an eigenvector of M,  for 

any d = (a', c') • D, 

~ o M o , ~ ( ~ )  = ~(~') 

o r  

~.,o.o. .=o,p. . ,v( . ,  c) = . ( . ' ,  c'). 

Now, summing up on c' 6 C, 

~ . , . p . . , ~ ( . ,  ¢) = ~o , . ( . ' ,  c'). 

This means the vector W defined by W .  = ~¢¢cv(a,  c) for a • A is an eigen. 

vector of matrix (Pa.')., . '~A. As its norm is 1, it is equal to (P(a))aEA: effecting 

the s,,mmation in (1), this proves 6(v([u])) = p([u]). 

(c) As v(a)  > 0 for a • D, p(~o(E)) > Oimplies p(E)  > O: for any word 

Y = ~o""  Y. • L (Y) ,  ~ -- (a~, c~), with u = a0--- a .  one has 

.([y]) = #(.o, co )p...,... p.._,.. 

and 

o~([~]) _< .([.]) = ~(ao)p.o., "-p.._,.. ___ ( sup ~(.)I~(~))..([~]). 
aEA,aED 

This implies the corresponding inequality for all measurable sets. So Property 

T holds and, by Proposition 2.7 and Corollary 2.6, u is the unique lift of #. | 

It is possible to extend this result to generalized Markov measures; the proof 

is practically the same, except the formulas are more complicated. 
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Remark 4.10: Before calculating measure v, check on the graph whether .4 and 

p have the following property: for all (a~,c ')  E D, and for all a E A such that  

there exists an arc with label a ending in vertex d,  the value of p , , ,  does not 

depend on a; then denote by p(,,,c') this common value. Let us look for the 

eigenvector (v(a, c))(,,c)eD under the form v(a, c) = v(c).p(4,c), with v(c) still 

unknown. But in this case equation (2) becomes 

pc., o,~o~(c)(r,.:o..=o,p¢..o~)= ~(c')p¢.,.c,). 

Now, choose for v(c) an eigenvector with norm 1 of matrix M'  defined by 
M'(c',  c) = E,:c.a=c,p(,,c); equality ~(a,c)v(a, c) = 1 holds since, by Lemma 4.8, 

Ea:(a,e)EDP(a,e) ---- 1. In this case the image of t, on C z is Markov with transition 

matrix M' .  

Example 4.11: Corollary 2.6 may be used in simple cases when Proposition 2.8 

may not: here are a nonsynchronizing automaton ,4 and a Markov measure p on 

X to which it may be applied. This is the graph of .A: 

© 
1/ 

o ® 
Q 

0 

\ /" 
¢7N 

X is defined by excluding the word l l~ )Endow X with the Markov measure 

defined by the transition probabilities poo = p E [0, l[,pol = q = 1 - p, and 

naturally Plo = 1. Then we are in the case of Remark 4.10: 

°i) M I = 0 1 
0 0 
q 0 

and the eigenvector with coordinates 

~(a) = ~(b) = (2 + 2q)-' ,  ~(c) = ~(d) = q.(2 + 2q) -1, 
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together with transition probabilities of p, define an invariant Markov measure 

v on Y with image p, which is unique by Proposition 4.9. 

Example 4.12: As in Example 2.9, the following automaton A is such that there 

is a Markov measure p on X having several lifts on Y, so the lifts of p-generic 

points do not behave nicely. This example is more sophisticated than Example 

2.9: the support X1 of p is not obtained by just cutting out some arcs in the 

graph of A so as to make it reducible. 

° 

1 

X = {0, 1, 2} z, p Markov with transition probability 

i 1/2 1 )  
P =  0 0, 

i/2 o 
hence 

p(o)) [2/5\ 
p(1) = 12/5l; 
p(2) \ : /5/  

one easily checks p5 has positive coefficients, so p is irreducible; nevertheless 

the support of p is subshift X1 defined by excluding all words corresponding to 

zero coefficients of the matrix: 00, 02, 11, 21 and 22. Suppose x = (an) E X1 

is p-generic. Its three preimages, corresponding to three possible choices for 

coordinate co, never have the same statistical properties: 

- -  if a0 E {0, 2}, choice co = a implies c can never be reached, whereas choice 

co = cc implies # { n  < N / c .  = c} >_ N/2 for all N; 

- -  i f ao  = 1 then Co = b means c can never be reached; co = c implies 

# { n  < N/c,, = c} >_ N/2. 

Example 4.13: When transducer ~" and Markov measure p fulfill the assump- 

tions of Proposition 4.9, any transduced image x ~ of a p-generic x is p'-generic 

with p' = ¢(v). But p' is generally not Markov. For instance, put ~" = ~'3,~ (Ex- 

ample 4.3) and let p be the Bernoulli measure on {0,1} with p([0]) = p, p([1]) = 

1 - p, p • (0,1). A straightforward calculation shows that p ' ( [ l l l ] ) /p ' ( [ l l ] )  = q 

whereas p'([ll])/p'([1]) = (p, + qp, + qs)/(2p, + q,); so p' is Markov iffp = 1/2, 
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or/~ = / d  is the uniform measure. In other cases genericity is preserved, but not 

genericity with regard to one particular measure. II 

C. TRANSDUCERS PRESERVING NORMALITY WHILE CHANGING THE BASE. 

In what conditions may normality be preserved - -  or rather, normality to 

the base p be mapped to normality to the base p~-- when the assumptions of 

Proposition 2.2 are not fulfilled? This is the question we try to answer here. 

Let ~" be an irreducible input-deterministic transducer such that X = A z, 

X ~ = B z. As ~" is input-deterministic, Proposition 2.3 shows one cannot have 

# B  _> #A.  If # B  = #A,  it is possible to show ~" must be nonambiguous for 

output. So the only remaining case is # B  < #A.  As was said in the Introduction, 

preservation of normality means if z E Az is normal to the base #A,  then any 

transduced y E B z is normal to the base # B .  

Let ~: A x C ~ B be the output function of ~': ~(a, c) is the output of the 

arc starting from c with input a; by Lemma 4.8 this arc exists, and it is unique 

because r is deterministic. 

To express these conditions, we need to use the matrix M ( u )  on C, associated 

to each output word u E B .  ( (#A)nM(u)c ,e  being the number of paths from c 

to c' with output label u, [u[ = n). Remark u ~ M ( u )  is an antimorphism, as 

M ( u v )  = M ( v ) M ( u ) .  

The stochastic matrix M ~ = Eb~BM(b) has an eigenvector V with rational 

coordinates, for which 

M ' . V = V ,  X . V = I  ( 1 = ( 1 , . . . 1 ) ) .  

The following Proposition allows us to decide whether a suitable transducer from 

A z to B z preserves normality. Remark the hypotheses of the following Proposi- 

tion do not depend on input labelling, provided ~" is deterministic. 

PROPOSITION 4.14: Suppose ~ is an irreducible input deterministic transducer 

with X = A z,  X ~ = B z. 

(i) //" x E A z is normal, the limiting frequency of  a word u E B* in any 

transduced/mage z I E X I is equal to 1.M(u).V. 

(ii) A necessary and suMeient condition for x ~ to be normal [or any normal z ,  

is given by a finite number of  conditions: 

• = X . M ( u ) . V  = ( # B )  - n  [or all word8 u e 8" with length 

n = # C .  
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Proof: 
(i) The uniform measure on X is Markov with transition probability pa',. = 

(#A)  -1. Hence the matrix M'  is the one described in Remark 4.10; by 

Proposition 4.9, it permits to construct measure v on Y. One has V = 

(v(c))cec. By Corollary 2.6, for any normal z E X, any transduced image 

z' E X '  is g'(v)-generic. 

The limiting frequency of a word u E B* in z' is equal to 

¢(v)([,]) = 

As v([y]) = v(c)(#A)-", with c such that I/0 = (.,., c), 

• (v)([ul) = Ec¢cv(c).Ec,¢cM(u)c,c = 1.M(u) .V.  

(ii) The conditions are obviously necessary. Conversely, suppose 1 .M(u) .V = 

( # B ) - "  for all u E B"  with rt = # C :  to ensure normality of z', one need 

just prove the same equality for all n E N. 

For i E N, define Ei as the subspace of R # c  generated by row-vectors 

V(b, b t, u)l.(M(ub) - bl(ubt)) for b, b' E B and u E B*, lul = i - 1 

and define E0 = {0}. The key fact is that each subspace E~ = ~k_<i Ek is strictly 

included in the next, up to some N after which they are identical. This results 

from the algebraic relationship between generators of Ei+l and Ei: 

(1) V(b,b',b,u)=V(b,b',u).M(b,) forbl  EB, l u l = i - 1 .  

Indeed if E~+, = E~, then E~+ 2 = E~+,: each generator of Ei+2, V(b,b',bxu) 
with lul = i, is the product by M(B1) of a generator of Ei+~, which is a linear 

combination of generators of Ek, k < i; so V(b, b', b,u) is a linear combination of 

generators of Ek+,,  k _< i, and so belongs to E~+,. 

The subspaces E~ must strictly increase up to some index N; as their di- 

mensions are bounded by # C ,  one has N _< # C .  

Equalities ~(v)([u]) = (#B)- I" I  for I"1 <- - are implicit in the assumptions. 

Finally one has also V(b, b', u) .V = 0 for I,,I > # c -  x, since E "  = Egr and 

E k =  E;°.  
In other terms, given u E B*, all 1.M(ub).V are equal for b E B; since 

their sum over b E B is equal to 1M(u)V,  they are equal to ( # B ) - '  1 .M(u) .V.  

By induction, 1 .M(u) .V = (#B) - I , I ,  whatever u E B*. I 
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The following result displays restrictive conditions for preservation of nor- 

reality by a transducer from A z to B z. 

PROPOSITION 4.15: Let ~ be an irreducible input -deterministic transducer with 

X = A z and X I = B z. Preservation of normality implies # B  divides #A .  

Proof: For b • B and n • N, one has 1 .M(b ' ) .V = ( # B )  -a and, if q is the 

common denominator of coordinates of V ,  as ( # A )" M ( b" ) and qV have integer 

coordinates by det~nition of M(u)  and q, q (#A)n l .M(b" ) .V  is an integer equal 

to q ( # A / # B )  n. Let p'/q' be the irreducible fraction equal to # A / # B ,  then q,, 

divides q for a l /n  • N, so qi = 1. I 

Example 4.16: Consider the following input-deterministic transducer changing 

the 4-shift into the 2 shift (input labels do not matter at all provided ~" is input- 

deterministic, as there axe 4 arcs starting from each vertex): 

0/0,1/0,2/0,3/0 (~0/1,111 
G " 2/1,3/0 

A = { 0 , 1 , 2 , 3 } ;  B = { 0 , 1 } ;  C =  {a,b}; X =  A z, X '  = B z. 

By Corollary 2.6, the unique measure p~ on X '  related to the uniform 

measure A on X is the image of the measure v with maximal entropy on Y. Put 

M(0) = ~-  and M(1) = ~ .  , 

where, for instance, 4M(0)i j  is the number of arcs from j to i with output 0. 

Denoting by 1 the row 2-vector with coordinates 1, V the column vector with 

coordinates 1/3 and 2/3, M = M(0) + M(1), with M.V = V and 1.M = 1, by 

the classical results of [pl], v is the Markov measure corresponding to distribution 

V on C and transition probability M, and one has 

p'([u]) = 1.M(t¢). . .  M(f l )M(a ) .V  for u = a ~ . . .  t~ E B*. 

The measure pl is uniform on B z. To prove this, by Proposition 4.14, it 

is sufficient to check p'([u]) = 1/4 for u E B 2. Putt ing A = M(0) - M(1), this 

reduces to proving 

1.A.V = 1.A2.V = 0, 

which, using the characteristic polynomial of A, is done by merely showing 

1.A.V = 0. 
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